Генетическая иэкологическая структура популяций. Генетическая структура популяции

 



Генетическая структура популяциихарактеризуется разной степенью генетического разнообразия особей. Совокупность генов, которые имеются у особей конкретной популяции, называетсягенофондом.Совокупность всех генов, сосредоточенных в хромосомах одного организма, называетсягенотипом.С позиций генетики,популяция - совокупность генотипов.Если соотношение генотипов в популяции неизменно, в ней существуетгенотипическое равновесие.Несмотря на изменчивость в ее структурных частях, популяция как целостная система устойчиво сохраняет генофонд, наследованный от предковой популяции.
Генотип, взаимодействуя с условиями среды, формирует фенотип.Фенотипомназываются элементарные признаки организма, определяющие индивидуальные особенности его строения и жизнедеятельности, которые зависят от взаимодействия генотипа с условиями среды.
Совокупность внешних признаков организма, отражающих его приспособленность к условиям среды, образует жизненную форму или биоморфу. Существование в течение многих поколений особей в популяции с двумя и более отчетливо выраженными формами, различающимися строением и выполняемыми функциями, называетсяполиморфизмом.
Универсальным свойством всего живого, от вирусов и микроорганизмов до высших растений и животных, является способность даватьмутации-внезапные естественные или вызываемые искусственно, наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.Мутации лежат в основе наследственной изменчивости и проявляются в фенотипе взрослого организма в результате того, что они изменяют процессы его онтогенеза.

Экологическая популяция –это население одного типа местообитания (биотопа), характеризующееся общим ритмом биологических циклов и характером образа жизни.Это наиболее мелкие территориальные группировки, которые формируются как совокупность элементарных популяций. Например, белка заселяет различные типы леса. Поэтому могут быть выделены «сосновые», «елово-пихтовые» и другие ее экологические популяции. Они слабо изолированы друг от друга, и обмен генетической информацией между ними происходит довольно часто, но реже чем между элементарными популяциями.

ЗаконХарди-Вайнберга

Предпосылки закона Харди-Вайнберга

Популяция является элементарной единицей эволюции, так как она обладает относительной самостоятельностью и ее генофонд может изменяться. Закономерности наследования различны в популяциях разных типов. В популяциях самоопыляющихся растений отбор происходит между чистыми линиями. В популяциях раздельнополых животных и перекрестноопыляемых растений закономерности наследования подчиняются закону Харди-Вайнберга.

В научном мире нечасто случается, чтобы разные ученые независимо друг от друга наткнулись на одну и ту же закономерность, но все же таких примеров достаточно, чтобы заставить нас поверить в существование «духа времени». К их числу относится и закон Харди--Вайнберга (известный также как закон генетического равновесия)-- одна из основ популяционной генетики. Закон описывает распределение генов в популяции.

Представьте себе ген, имеющий два варианта-- или, пользуясь научной терминологией, два аллеля. Например, это могут быть гены «низкорослости» и «высокорослости», как в случае менделевского гороха, или наличие или отсутствие предрасположенности к рождению двойни. Харди и Вайнберг показали, что при свободном скрещивании, отсутствии миграции особей и отсутствии мутаций относительная частота индивидуумов с каждым из этих аллелей будет оставаться в популяции постоянной из поколения в поколение. Другими словами, в популяции не будет дрейфа генов.

 Личности ученых

Годфри Харолд Харди (1877-1947) - английский математик, родился в Кранли, графство Суррей. Сын учителя рисования. Изучал математику в Кембриджском и Оксфордском университете. Пожалуй, самую большую известность Харди принесли совместные работы с Джоном Идензором Литлвудом (1885-1977) и позднее с индийским математиком-самоучкой Cриниваса Рамануджаном (1887-1920), который работал клерком в Мадрасе. В 1913 году Рамануджан послал Харди список доказанных им теорем. Признав гениальность юного клерка, Харди пригласил его в Оксфорд, и в течение нескольких лет, предшествовавших безвременной смерти Рамануджана, они опубликовали серию блестящих совместных работ.

Вильгельм Вайнберг (1862-1937) - немецкий врач, имевший большую частную практику в Штуттгарте. По воспоминаниям современников, помог появиться на свет 3500младенцам, в том числе по крайней мере 120парам близнецов. На основании собственных наблюдений над рождением близнецов и переоткрытых генетических законов Менделя пришел к выводу, что предрасположенность к рождению двуяйцевых (неидентичных) близнецов передается по наследству.

Закон Харди-Вайнберга

Закон Харди-Вайнберга сформулировали в 1908 г. Независимо друг от друга математик Г. Харди в Англии и врач В. Вайнберг в Германии. Закон Харди-Вайнберга гласит, что процесс наследственной преемственности сам по себе не ведет к изменению частот аллелей и (при случайном скрещивании) частот генотипов по определенному локусу. Более того, при случайном скрещивании равновесные частоты генотипов по данному локусу достигаются за одно поколение, если исходные частоты аллелей одинаковы у обоих полов.

Равновесные частоты генотипов задаются произведениями частот соответствующих аллелей. Если имеются только два аллеля, А и а, с частотами p и q, то частоты трех возможных генотипов выражаются уравнением:

(р + g)2= р2+ 2рg + g2

А а АА Аа аа,

где буквам во второй строке, обозначающем аллели и генотипы, соответствуют расположенные над ними частоты в первой строке; в котором:

  • р - частота встречаемости аллеля А;
  • g - частота встречаемости аллеля а;
  • g2- частота встречаемости генотипа аа;
  • р2- частота встречаемости генотипа АА;
  • рg - частота встречаемости генотипа Аа.

Таким образом, если скрещивание случайно, то частоты генотипов связаны с частотами аллелей простым уравнением квадрата суммы. Приведенная выше формула получила название уравнения Харди-Вайнберга.

Предположим, что в популяции р = 0,7А, g = 0,3а, тогда частоты встречаемости генотипов будут равны (0,7 + 0,3)2= 0,49 + 0,42 + 0,09 = 1.

Интересно, что в следующем поколении гаметы с аллелем А будут вновь возникать с частотой 0,7 (0,49 от АА + 0,21 от Аа), а с аллелем а - с частотой 0,3 (0,09 от аа + 0,21 от Аа), т.е. частоты генов и генотипов остаются неизменными из поколения в поколение - это и есть закон Харди-Вайнберга.  Если имеются три аллеля, например, А1, А2 и А3, с частотами p, q и r, то частоты генотипов определяются следующим образом:

(р + q + r)2= р2+ q2+ r2+ 2рq + 2pr + 2qr

A1 A2 А3 А1А1 А2А2 А3А3 А1А2 А1А3 А2А3.

Аналогичный прием возведения в квадрат многочлена может быть использован для определения равновесных частот генотипов при любом числе аллелей. Здесь можно отметить, что сумма всех частот аллелей, так же, как и сумма всех частот генотипов, всегда должна быть равна 1. Если имеются только два аллеля с частотами р и q, то р + q = 1, и, следовательно, (р + g)2= р2+ 2рg + g2= 1; если же имеются три аллеля с частотами p, q и r, то р + q + r = 1, и, следовательно, также (р + q + r)2= 1 и т.д.

Чтобы понять смысл закона Харди-Вайнберга, можно привести простой пример. Предположим, что данный локус содержит один из двух аллелей, А и а, представленных с одинаковыми для самцов и самок частотами: р для А и q для а. Представим себе, что самцы и самки скрещиваются случайным образом, или, что то же самое, гаметы самцов и самок образуют зиготы, встречаясь случайно. Тогда частота любого генотипа будет равна произведению частот соответствующих аллелей.

Вероятность того, что некоторая определенная особь обладает генотипом АА, равна вероятности (р) получить аллель А от матери, умноженной на вероятность (р) получить аллель А от отца, то есть р умножить на р равняется р2.

Совершенно аналогично вероятность того, что определенная особь обладает генотипом аа, равна g2. Генотип Аа может возникнуть двумя путями: организм получает аллель А от матери и а от отца, или, наоборот, аллель А от отца и аллель а от матери. Вероятность того и другого события равна рg, а значит суммарная вероятность возникновения Аа равна 2рg. Основные положения закона Харди-Вайнберга

Теперь можно доказать справедливость трех утверждений, содержащихся в законе Харди-Вайнберга:

1. Частоты аллелей не изменяются от поколения к поколению. Это можно легко показать. Частота аллеля А в потомстве в соответствии с таблицей 1 равна сумме частоты генотипа АА и половины частоты генотипа Аа, т.е. равна р2+ рg = р(р + g) = р (поскольку р + g =1).

2. Равновесные частоты генотипов задаются возведением в квадрат суммы частот аллелей и не изменяются от поколения к поколению. Так как частоты аллелей у потомства остаются такими же (р и g), какими были у родителей, то и частоты генотипов в следующем поколении также остаются неизменными и равными р2, 2рg и g2.

3. Равновесные частоты генотипов достигаются за одно поколение. При этом в таблице не говорится о частотах генотипов в родительском поколении. Какими бы они не были, частоты генотипов потомков будут р2, 2рg + g2, если частоты аллелей одинаковы у самцов и самок и равны р и g.

Применение закона Харди-Вайнберга

Одно из возможных применений закона Харди-Вайнберга состоит в том, что он позволяет рассчитать некоторые из частот генов и генотипов в случаях, когда не все генотипы могут быть идентифицированы вследствие доминантности некоторых аллелей. Альбинизм у человека обусловлен довольно редким рецессивным геном. Если аллель нормальной пигментации обозначить - А, а аллель альбинизма - а, то генотип альбиносов будет аа, а генотип нормально пигментированных людей - АА и Аа. Предположим, что в какой-то человеческой популяции частота альбиносов составляет 1 на 10000. Согласно закону Харди-Вайнберга, частота гомозигот аа равна q2; таким образом, q2= 0, 0001, откуда q= 0, 01. Из этого следует, что частота нормального аллеля равна 0, 99. Частоты генотипов нормально пигментированных людей составляют р2= 0, 992= 0, 98 для генотипа АА и 2рq = 2 х 0,99 х 0,01= 0,02 для генотипа Аа.

Группы крови системы АВО могут служить примером локуса с тремя аллелями. Одно интересное следствие из закона Харди-Вайнберга состоит в том, что редкие аллели присутствуют в популяции главным образом в гетерозиготном, а не в гомозиготном состоянии. Рассмотрим приведенный пример с альбинизмом. Частота альбиносов (генотип аа) равна 0, 0001, а частота гетерозигот - 0, 02. Частота рецессивного аллеля а у гетерозигот составляет половину частоты гетерозигот, т.е. 0, 01. Следовательно, в гетерозиготном состоянии находится примерно в 100 раз больше рецессивных аллелей а, чем в гомозиготном.

В общем случае, если частота рецессивного аллеля в популяции равна q, частота рецессивных аллелей в гетерозиготах составляет pq (половина от 2рq), а в гомозиготах - q2. Отношение первой частоты ко второй равно рq\q2= р\q. Эта величина при малых значениях q приблизительно составляет 1\q. Таким образом, чем ниже частота аллеля, тем большая доля этого аллеля присутствует в популяции в гетерозиготном состоянии. Например, частота рецессивного гена алькаптонурии составляет примерно 0, 0001. Частота людей, страдающих алькаптонурией, равна q2= 0, 000001, т.е. 1 на 1 млн., тогда как частота гетерозигот равна 2рq, т.е. около 0, 002. Следовательно, число генов алькаптонурии в гетерозиготах примерно в 1000 раз больше, чем в гомозиготах.

Можно представить себе, что некий введенный в заблуждение диктатор, одержимый евгеническими идеями «улучшения расы», решил элиминировать из популяции альбинизм. Поскольку гетерозиготы неотличимы от гомозигот по доминантному аллелю, его программа должна основываться на уничтожении или стерилизации рецессивных гомозигот. Это приведет лишь к весьма незначительному снижению частоты рецессивного аллеля в популяции, так как большинство аллелей альбинизма содержатся в гетерозиготах, а значит, не проявляются. Поэтому в следующем поколении частота альбинизма будет почти такой же, как в предыдущем. Потребуется вести отбор на протяжении очень многих поколений, чтобы в значительной степени снизить частоту рецессивного аллеля.

Обратная ситуация возникает в настоящее время в человеческой популяции в отношении рецессивных летальных заболеваний, которые научились теперь лечить. Примером может служить фенилкетонурия. Частота этого аллеля составляет 0,006. Даже если бы все гомозиготы излечивались и размножались столь же эффективно, как и нормальные люди, частота гена фенилкетонурии возрастала бы очень медленно, а частота гомозигот по этому гену - еще медленнее. Если все индивидуумы, стадающие данным заболеванием, будут излечиваться, то частота гена фенилкетонурии за одно поколение измениться от 0, 06 до 0, 006036 (q1= q + q2). Разумеется, если излечиваются не все больные или если у излечившихся число детей в среднем меньше, чем у здоровых, то частота аллеля у больных фенилкетонурией будет увеличиваться еще медленнее.

Предыдущие материалы: Следующие материалы: